Prior works on improving speech quality with visual input typically study each type of auditory distortion separately (e.g., separation, inpainting, video-to-speech) and present tailored algorithms. This paper proposes to unify these subjects and study Generalized Speech Enhancement, where the goal is not to reconstruct the exact reference clean signal, but to focus on improving certain aspects of speech. In particular, this paper concerns intelligibility, quality, and video synchronization. We cast the problem as audio-visual speech resynthesis, which is composed of two steps: pseudo audio-visual speech recognition (P-AVSR) and pseudo text-to-speech synthesis (P-TTS). P-AVSR and P-TTS are connected by discrete units derived from a self-supervised speech model. Moreover, we utilize self-supervised audio-visual speech model to initialize P-AVSR. The proposed model is coined ReVISE. ReVISE is the first high-quality model for in-the-wild video-to-speech synthesis and achieves superior performance on all LRS3 audio-visual enhancement tasks with a single model. To demonstrates its applicability in the real world, ReVISE is also evaluated on EasyCom, an audio-visual benchmark collected under challenging acoustic conditions with only 1.6 hours of training data. Similarly, ReVISE greatly suppresses noise and improves quality. Project page: https://wnhsu.github.io/ReVISE.
translated by 谷歌翻译
我们介绍了Audioscopev2,这是一种最先进的通用音频视频在屏幕上的声音分离系统,该系统能够通过观看野外视频来学习将声音与屏幕上的对象相关联。我们确定了先前关于视听屏幕上的声音分离的几个局限性,包括对时空注意力的粗略分辨率,音频分离模型的收敛性不佳,培训和评估数据的差异有限,以及未能说明贸易。在保存屏幕声音和抑制屏幕外声音之间的关闭。我们为所有这些问题提供解决方案。我们提出的跨模式和自我发场网络体系结构随着时间的推移以精细的分辨率捕获了视听依赖性,我们还提出了有效的可分离变体,这些变体能够扩展到更长的视频而不牺牲太多性能。我们还发现,仅在音频上进行预训练模型可大大改善结果。为了进行培训和评估,我们从大型野外视频数据库(YFCC100M)中收集了新的屏幕上的人类注释。这个新数据集更加多样化和具有挑战性。最后,我们提出了一个校准过程,该过程允许对屏幕重建与屏幕外抑制进行精确调整,从而大大简化了具有不同操作点的模型之间的性能。总体而言,我们的实验结果表明,在屏幕上的分离性能在更一般条件下的屏幕分离性能的改善要比以前具有最小的额外计算复杂性的方法更为普遍。
translated by 谷歌翻译
在本文中,我们呈现VDTTS,一个视觉驱动的文本到语音模型。通过配音而激励,VDTTS利用视频帧作为伴随文本的附加输入,并生成与视频信号匹配的语音。我们展示了这允许VDTTS,与普通的TTS模型不同,产生不仅具有自然暂停和间距等韵律变化的语音,而且还与输入视频同步。实验,我们显示我们的模型产生良好的同步输出,接近地面真理的视频语音同步质量,在几个具有挑战性的基准中,包括来自VoxceleB2的“野外”内容。我们鼓励读者查看演示视频,演示视频语音同步,对扬声器ID交换和韵律的鲁棒性。
translated by 谷歌翻译
我们呈现TranslatOrron 2,一个神经直接语音转换转换模型,可以训练结束到底。 TranslatOrron 2由语音编码器,音素解码器,MEL谱图合成器和连接所有前三个组件的注意模块组成。实验结果表明,翻译ron 2在翻译质量和预测的语音自然方面,通过大幅度优于原始翻译,并且通过减轻超越,例如唠叨或长暂停来大幅提高预测演讲的鲁棒性。我们还提出了一种在翻译语音中保留源代言人声音的新方法。训练有素的模型被限制为保留源扬声器的声音,但与原始翻译ron不同,它无法以不同的扬声器的语音产生语音,使模型对生产部署更加强大,通过减轻潜在的滥用来创建欺骗音频伪影。当新方法与基于简单的替代的数据增强一起使用时,训练的翻译器2模型能够保留每个扬声器的声音,以便用扬声器转动输入输入。
translated by 谷歌翻译
As the accuracy of machine learning models increases at a fast rate, so does their demand for energy and compute resources. On a low level, the major part of these resources is consumed by data movement between different memory units. Modern hardware architectures contain a form of fast memory (e.g., cache, registers), which is small, and a slow memory (e.g., DRAM), which is larger but expensive to access. We can only process data that is stored in fast memory, which incurs data movement (input/output-operations, or I/Os) between the two units. In this paper, we provide a rigorous theoretical analysis of the I/Os needed in sparse feedforward neural network (FFNN) inference. We establish bounds that determine the optimal number of I/Os up to a factor of 2 and present a method that uses a number of I/Os within that range. Much of the I/O-complexity is determined by a few high-level properties of the FFNN (number of inputs, outputs, neurons, and connections), but if we want to get closer to the exact lower bound, the instance-specific sparsity patterns need to be considered. Departing from the 2-optimal computation strategy, we show how to reduce the number of I/Os further with simulated annealing. Complementing this result, we provide an algorithm that constructively generates networks with maximum I/O-efficiency for inference. We test the algorithms and empirically verify our theoretical and algorithmic contributions. In our experiments on real hardware we observe speedups of up to 45$\times$ relative to the standard way of performing inference.
translated by 谷歌翻译
Human linguistic capacity is often characterized by compositionality and the generalization it enables -- human learners can produce and comprehend novel complex expressions by composing known parts. Several benchmarks exploit distributional control across training and test to gauge compositional generalization, where certain lexical items only occur in limited contexts during training. While recent work using these benchmarks suggests that pretrained models achieve impressive generalization performance, we argue that exposure to pretraining data may break the aforementioned distributional control. Using the COGS benchmark of Kim and Linzen (2020), we test two modified evaluation setups that control for this issue: (1) substituting context-controlled lexical items with novel character sequences, and (2) substituting them with special tokens represented by novel embeddings. We find that both of these setups lead to lower generalization performance in T5 (Raffel et al., 2020), suggesting that previously reported results have been overestimated due to uncontrolled lexical exposure during pretraining. The performance degradation is more extreme with novel embeddings, and the degradation increases with the amount of pretraining data, highlighting an interesting case of inverse scaling.
translated by 谷歌翻译
The widely studied task of Natural Language Inference (NLI) requires a system to recognize whether one piece of text is textually entailed by another, i.e. whether the entirety of its meaning can be inferred from the other. In current NLI datasets and models, textual entailment relations are typically defined on the sentence- or paragraph-level. However, even a simple sentence often contains multiple propositions, i.e. distinct units of meaning conveyed by the sentence. As these propositions can carry different truth values in the context of a given premise, we argue for the need to recognize the textual entailment relation of each proposition in a sentence individually. We propose PropSegmEnt, a corpus of over 35K propositions annotated by expert human raters. Our dataset structure resembles the tasks of (1) segmenting sentences within a document to the set of propositions, and (2) classifying the entailment relation of each proposition with respect to a different yet topically-aligned document, i.e. documents describing the same event or entity. We establish strong baselines for the segmentation and entailment tasks. Through case studies on summary hallucination detection and document-level NLI, we demonstrate that our conceptual framework is potentially useful for understanding and explaining the compositionality of NLI labels.
translated by 谷歌翻译
Large language models (LLMs) have shown impressive results across a variety of tasks while requiring little or no direct supervision. Further, there is mounting evidence that LLMs may have potential in information-seeking scenarios. We believe the ability of an LLM to attribute the text that it generates is likely to be crucial for both system developers and users in this setting. We propose and study Attributed QA as a key first step in the development of attributed LLMs. We develop a reproducable evaluation framework for the task, using human annotations as a gold standard and a correlated automatic metric that we show is suitable for development settings. We describe and benchmark a broad set of architectures for the task. Our contributions give some concrete answers to two key questions (How to measure attribution?, and How well do current state-of-the-art methods perform on attribution?), and give some hints as to how to address a third key question (How to build LLMs with attribution?).
translated by 谷歌翻译
Spurious correlations in training data often lead to robustness issues since models learn to use them as shortcuts. For example, when predicting whether an object is a cow, a model might learn to rely on its green background, so it would do poorly on a cow on a sandy background. A standard dataset for measuring state-of-the-art on methods mitigating this problem is Waterbirds. The best method (Group Distributionally Robust Optimization - GroupDRO) currently achieves 89\% worst group accuracy and standard training from scratch on raw images only gets 72\%. GroupDRO requires training a model in an end-to-end manner with subgroup labels. In this paper, we show that we can achieve up to 90\% accuracy without using any sub-group information in the training set by simply using embeddings from a large pre-trained vision model extractor and training a linear classifier on top of it. With experiments on a wide range of pre-trained models and pre-training datasets, we show that the capacity of the pre-training model and the size of the pre-training dataset matters. Our experiments reveal that high capacity vision transformers perform better compared to high capacity convolutional neural networks, and larger pre-training dataset leads to better worst-group accuracy on the spurious correlation dataset.
translated by 谷歌翻译
Machine learning models have been found to learn shortcuts -- unintended decision rules that are unable to generalize -- undermining models' reliability. Previous works address this problem under the tenuous assumption that only a single shortcut exists in the training data. Real-world images are rife with multiple visual cues from background to texture. Key to advancing the reliability of vision systems is understanding whether existing methods can overcome multiple shortcuts or struggle in a Whac-A-Mole game, i.e., where mitigating one shortcut amplifies reliance on others. To address this shortcoming, we propose two benchmarks: 1) UrbanCars, a dataset with precisely controlled spurious cues, and 2) ImageNet-W, an evaluation set based on ImageNet for watermark, a shortcut we discovered affects nearly every modern vision model. Along with texture and background, ImageNet-W allows us to study multiple shortcuts emerging from training on natural images. We find computer vision models, including large foundation models -- regardless of training set, architecture, and supervision -- struggle when multiple shortcuts are present. Even methods explicitly designed to combat shortcuts struggle in a Whac-A-Mole dilemma. To tackle this challenge, we propose Last Layer Ensemble, a simple-yet-effective method to mitigate multiple shortcuts without Whac-A-Mole behavior. Our results surface multi-shortcut mitigation as an overlooked challenge critical to advancing the reliability of vision systems. The datasets and code are released: https://github.com/facebookresearch/Whac-A-Mole.git.
translated by 谷歌翻译